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EXECUTIVE SUMMARY 

Recovery from the impacts of natural hazards, such as those caused by earthquakes, is a complex 

and multidimensional process, which constitutes the least understood component of the disaster 

management cycle. Not surprisingly, studies have shown that the time of recovery from 

earthquakes does not solely depend upon the extent of the initial damage, but it is strongly 

influenced by the socio-economic conditions of the affected region. To exemplify, low income 

families will likely depend on external financial aid (e.g. from government agencies) to start 

reconstruction, which often hinders the initiation of the rebuilding process. Moreover, residents 

with disabilities and the elderly will require special attention during the immediate response and 

long-term recovery phases following an event. These constitute some examples of how the social 

characteristics of a region determine the response and recovery phase following a damaging event. 

The State of California, Alfred E. Alquist Seismic Safety Commission (CSSC) engaged the Global 

Earthquake Model Foundation (GEM) and the University of California at Los Angeles (UCLA), 

Department of Civil and Environmental Engineering to develop an operational framework and 

open source software that may be used for pre-earthquake planning and post-earthquake decision-

making. The outcome is a set of methods and tools that are able to provide estimates of post-

earthquake recovery times that consider physical damage from an earthquake as well as the effects 

of the socio-economic conditions on recovery. The city of Napa, California and the 2014 South 

Napa Earthquake were used as a real-world case study to demonstrate the tool and to validate the 

reliability of the results using a real-world recovery outcome. 
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1. Linking Damage and Pre-existing Socio-economic Conditions with 

Recovery Outcomes 

While numerous research and disaster management communities have sought to explain long-term 

recovery processes, the ability to predict differential recovery outcomes is increasingly being seen 

as a key step for recovery planning and decision-making. To predict recovery outcomes, however, 

it is necessary to understand the determinants of recovery processes and how recovery from a 

damaging event, such as an earthquake, should be measured. To incorporate parameters that affect 

recovery outcomes from an earthquake into a quantitative framework and software tool, work was 

conducted to explore metrics of resilience and their association with differential recovery 

outcomes. Resilience is defined within this context as the ability of social systems to prepare for, 

respond to, and recover from damaging hazard events (Cutter, et al., 2008). It is within this context 

that a relationship between pre-existing socio-economic conditions (those associated with disaster 

resilience) and recovery is established through a novel framework, whereby disaster resilience 

indicators are used to predict the evolution of recovery (or recovery probabilities) of the building 

stock following an earthquake. The city of Napa, California and the 2014 South Napa Earthquake 

were used as a case study for the development and validation of the methodology. While relatively 

modest in intensity (Mw 6.0), this earthquake caused significant ground shaking and damage, 

particularly in the city’s core. Direct costs associated with damage were estimated at USD 362 

million, with economic costs to Napa County estimated at up to USD 1 billion (Galloway & 

Ingham, 2015). Figure 1-1 illustrates examples of affected residential properties, businesses and 

critical infrastructure damage. 

https://www2.usgs.gov/blogs/features/usgs_top_story/south-napa-earthquake-one-year-later/
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Figure 1-1. Damage to residential properties, businesses and critical infrastructure. Photo credits: Napa Valley 

Register (J.L.Sousa), Justin Sullivan/Getty Images, KCRA (Brian Hicky), vos Iz Neias. 

To define the relationship between the disaster resilience concept and earthquake recovery, a 

spatiotemporal assessment of recovery was statistically associated with metrics of disaster 

resilience that are cited in the research literature as being associated with recovery outcomes 

(Burton C. , 2015). The disaster resilience of the city of Napa is represented using a set of proxy 

variables that are classified into five subcomponents: social, economic, infrastructure, community 

capital and institutional resilience (Cutter, Burton, & Emrich, 2010). The variables, shown in Table 

1-1, were retrieved from publically available sources at the census block group level of geography, 

as defined by the U.S. Census Bureau. 

 

Table 1-1. List of variables representing pre-existing disaster resilience in the city of Napa. 

Variables 

Social Resilience 

Percent of households where they speak English 

Percent of housing units with no persons with a disability 

Percent of the civilian noninstitutionalized population with any type of health insurance coverage 

Percent of occupied housing units with telephone service 

Percent of occupied housing units with vehicle available 

https://www.census.gov/geo/reference/gtc/gtc_bg.html
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Percent of the population 25 years and over that have at least a regular high school diploma  

 
Percent of the total population that is male 

Percent of the total population that is above 5 and below 60 years 

Percent of the total population that is not a minority (White alone, not Hispanic or Latino) 

Number of child care services 

Percent of the total households with less than 5 persons 

Percent of the single-parent households with a male householder, no wife present 

Economic Resilience 

Percent of households with earnings in the past 12 months 

 
Percent of population 16 years and over in labour force that is employed 

Percent of the population that has income in the past 12 months at or above poverty level 

Per capita income as a fraction of the highest amongst the block groups 

Percent of the renter-occupied housing units with gross rent less than $1500a) (+) 

Percent of the civilian employed population 16 years and over that are not employed in food, accommodation and 

retail tradeb) 

Percent of females 20 to 64 years in households that are in labour force 

 
Percent of occupied housing units that are owner occupied 

 
Percent of the civilian employed population 16 years and over that are employed in healthcare practitioners and 

technical occupations 

 Percent of households with no supplemental security income in the past 12 months 

 
Percent of households with no public assistance income in the past 12 months 

 
Infrastructure Resilience 

Housing density 

 Percent of housing units that are built after 1950 

 Percent of housing units that are not mobile homes 

 Number of internet, television, radio and telecommunications broadcasters 

 Number of schools (primary and secondary)  

 Number of hotels & motels 

 Number of banks 

 Percent of housing units that are vacant 

 Number of police, fire, emergency relief services and temporary shelters 

 

                                                 
a) In the U.S., it is commonly accepted that families who pay more than 30% of their income for housing are considered 

cost burdened. The value of $1500 as a limit of affordability was set according to this rule. 
b) This variable is used as a proxy for single sector employment dependence. 
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Percent of the housing units that are single family detached homes 

 Community Capital 

Number of civic and social advocacy organizations 

Number of churches and religious organizations 

 Number of arts, entertainment and recreation centres, libraries, museums, parks and historic sites 

Percent of the population that lived in the same Metropolitan Statistical Area 1 year ago 

 Institutional Resilience 

Percent of the civilian employed population 16 years and over employed in emergency services (firefighting, law 

enforcement, protection) 

The spatiotemporal evaluation of the recovery in the city of Napa was accomplished using in situ 

observations of building damage at six-month intervals. In the aftermath of the 2014 Napa 

Earthquake, building damage observations (i.e. location, building type, color-tagging information 

and damage description) were geocoded by city officials and made available via a web Geographic 

Information System (GIS). This information was retrieved to build a geospatial point-level dataset 

of 1462 damaged buildings. After the development of the initial damage database, three separate 

field surveys were conducted in the city of Napa, 6 months, 12 months and 18 months following 

the earthquake. As part of the recovery evaluation process, a detailed inspection of a set of 356 

damaged buildings was conducted for which different recovery stages were attributed on a 

building-by-building basis. Due to time constraints, it was not feasible to survey all the damaged 

buildings (1462); therefore, 356 were selected for inspection (Figure 1-2). These included all the 

red-tagged and a random sample of the yellow tagged structures. 

  
 

Figure 1-2. (a) Initial red and yellow tagged buildings across the block groups of the County of Napa and (b) the 356 

evaluated red and yellow tagged buildings (zoom in the city of Napa). 

At each field evaluation, each building was assigned a binary code (0 or 1) defining the stage of 

http://www.esri.com/esri-news/arcuser/summer-2015/a-platform-for-coordinating-disaster-response
http://www.esri.com/esri-news/arcuser/summer-2015/a-platform-for-coordinating-disaster-response
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the recovery, based on an exterior visual inspection. In this framework, 0 represents a “No 

Recovery” stage; and 1 is associated with the building’s “Full Recovery” in which the building is 

fully repaired/rebuilt and reoccupied (Figure 1-3). Recovery from an earthquake depends on 

several factors and could include social capacities, the financial reserves of individuals and 

communities, political decision-making, the severity of damages sustained, and the proportion of 

a community adversely affected. The validation metric for this case study focuses explicitly on the 

material manifestation of recovery (i.e., the reconstruction of residential and commercial 

buildings), although this work is sensitive to the multifaceted nature of recovery. The rationale for 

considering the reconstruction of the built environment is that reconstruction is essential for 

returning life and livelihoods in Napa to pre-impact levels of functioning. 

 

Figure 1-3. Example of the recovery progress of one building in the city of Napa after: (a) 6 months; (b) 12 months 

and (c) 18 months following the earthquake. 

According to the first inspection (six months following the event), almost 61% of the initial yellow-

tagged buildings and nearly a quarter of the initial red-tagged structures were fully repaired. One 

year after the earthquake, the structures previously classified as fully recovered were excluded from 

the evaluation; the remaining buildings were re-evaluated to define an updated recovery category, 

based on their reconstruction progress. During the second field survey, the recovery stage of thirty-

six buildings evolved from category “0” to “1”, with equal proportion between yellow and red 

tagged structures. Finally, during the third survey, 18 months following the earthquake, fifty-five 

additional buildings were fully recovered, thirty-nine of which were initially yellow tagged and 

sixteen red tagged. 

To determine the relationship between the collected set of disaster resilience metrics and the 

observed recovery outcomes over time, a parametric probabilistic model was proposed, allowing 

the treatment of uncertainties in a robust and statistically significant way. Specifically, a logistic 

regression model (Hosmer & Lemeshow, 2000) was calibrated to predict the probability of a “Full 

 

(a) Recovery Category “0” 

 

(b) Recovery Category “0” 

 

(c) Recovery Category “1” 
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Recovery” occurring in each of the block groups for which resilience variables were collected and 

recovery outcomes were observed. The socio-economic parameters constitute the independent 

variables (predictors) of the regression, while the recovery observations are the dependent 

(response) variables. Because the temporal evolution of the recovery process is also of interest, the 

variable time was included as a predictor, assuming values of 6, 12 and 18 months. Finally, these 

parameters were complemented with an indicator able to implicitly account for the level of seismic-

induced damage at a given location. Specifically, the median Modified Mercalli Intensity (MMI) 

(Wood & Newmann, 1931) observed in each block group at the time of the event was utilized as a 

measure of seismic-induced damage. The distribution of MMI is readily available and was acquired 

from the United States Geological Survey (USGS) ShakeMap platform at a spatial resolution of 30 

arc seconds. 

For the regression to be possible, each block group was assigned a recovery stage (0 or 1), to make 

the data analogous to the resilience variables that were collected at the block group level of 

geography. To accomplish this, a simulation procedure was devised, resulting in a distribution of 

recovery probabilities for each block group, for each time, as a function of the selected set of 

independent variables. In other words, not only an absolute value, but a distribution of recovery 

probabilities in each block group is computed, capturing the uncertainty associated with the random 

nature of the recovery process (Figure 1-4). 

 

 

 

 

 

 

http://earthquake.usgs.gov/earthquakes/eventpage/nc72282711#shakemap
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a)   

   

b)   

   

c)   

Figure 1-4. 50% (median), lower (16% percentile) and upper (84% percentile) bound recovery probabilities in the 

city of Napa as determined by the model, at a) 6 months, b) 12 months, and c) 18 months following the earthquake. 

As a measure of the quality of the results, the mean predicted values of recovery are plotted as a 

function of the “surveyed” probabilities in each block group for each of the field surveys (Figure 

1-5). In this context, “surveyed” probabilities are determined as the fraction of assessed buildings 

that are fully recovered at the time of interest, in each block group. As illustrated in Figure 1-5, the 

relationship between mean predicted and surveyed values approaches an almost perfect linear trend 

for the three survey instances. 
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Figure 1-5. Predicted versus “surveyed” probabilities in each block group; for the first, second, and third field 

surveys. 

The methodology further allows us to identify the resilience variables that most strongly affect the 

recovery trajectory, as depicted by our model (Table 1-2). 

Table 1-2. Independent resilience variables contributing more strongly to the predicted recovery probabilities. 

 

According to Table 1-2, seven of the thirty-eight resilience parameters, the variable representing 

the time, and the damage indicator (MMI) significantly contribute to the prediction of the recovery 

trajectory occurring in Napa. These resilience parameters correspond to the social, economic and 

infrastructure resilience subcomponent. 
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To better understand the contribution of the most “significant” resilience variables, Figure 1-6 

illustrates the spatial distribution of the six most significant indicators. In general, lower values are 

identified in the central part of the city for all the six indicators, when compared with those of the 

outer block groups. This pattern is in accordance with the median predicted recovery outcome, 

according to which lower recovery probabilities are also found in the central block groups (Figure 

1-4). Conversely, the distribution of MMI has an opposite effect on the recovery process. More 

specifically, MMI values appear to be higher and more homogeneous in the central block groups, 

where a slower recovery process is taking place. Not surprisingly, less resilient and more damaged 

areas are linked to a longer recovery process. 

   

 

  
 

Figure 1-6. Spatial distribution of six of the nine significant variables presented in Table 1-2. 

 

Practicality of the case study 

As previously described, seven of the thirty-eight selected resilience indicators, the variable time, 

and the spatial distribution of MMI were verified to be the parameters that contribute to the 

prediction of building recovery based on their statistical significance. More specifically, the seven 
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identified resilience variables are: the percentage of English speaking population, the presence of 

health insurance coverage, the households’ structure, the households’ earnings (whether a 

household has any type of available income), employment status, homeownership, and the 

percentage of buildings constructed after 1950. 

One of the main benefits of the proposed methodology is its potential to be applied in different 

areas affected by an earthquake for which damage/recovery data is not available. This is possible 

since the model allows the prediction of the recovery over time, solely by providing the selected 

set of resilience variables and the spatial distribution of the MMI. This overcomes the problem 

arising from the usual lack of post-earthquake damage and/or recovery observations over time and 

provides decision-makers and stakeholders an immediate overview of the recovery progress of 

their community. Thus, decision-makers can identify vulnerable areas that lag to recover and define 

their actions accordingly (e.g. anticipate the need of temporary sheltering). 

In addition, the indication of the most “significant” socio-economic drivers of the recovery, along 

with the spatial distribution and evolution of the predicted recovery probabilities, facilitates the 

identification of socio-economic weaknesses and strengths within communities. This allows key 

stakeholders and policy-makers to identify a priori which are the areas that, due to their increased 

vulnerability, are more prone to experience greater difficulties in recovering. Thus, such 

information can be utilised to develop pre-disaster recovery plans that reflect the actual needs of 

the population and contribute to a rapid and efficient transition to normality. In addition, following 

an earthquake, the proposed methodology can be used by stakeholders to re-define or enforce 

rehabilitation efforts, by comparing the recovery predictions with the actual recovery trajectory. 

To exemplify, an area that is recovering considerably slower than predicted may imply that 

additional support to the vulnerable groups and better management in the indicated regions is 

required. 
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2. Post-Earthquake Recovery Modelling Methodology 

Overview 

A major earthquake occurring in one of the many large urban centers of California could lead to 

thousands of casualties, hundreds of thousands of displaced households and billions of dollars in 

losses. The lives of the impacted residents are likely to be enormously disrupted. The pace of 

recovery will depend among other things on the extent of building and lifeline damage, the extent 

of business disruption, the availability of utilities and how quickly communities can repair and 

replace their housing. Recent disasters like Hurricane Katrina and Super Storm Sandy have 

demonstrated the need to facilitate the speedy recovery of permanent housing in the affected 

communities. The immediate impact and pace of housing recovery is directly related to the 

likelihood of permanent outmigration of residents from the region. The overall goal of this section 

is to demonstrate the scientific framework and computational tools developed to quantify the 

effectiveness of specific resilience-building actions (preparedness, mitigation, and response) that 

would increase the speed of recovery following an earthquake. 

The four main components of the recovery modelling methodology are (1) recovery-based limit 

state fragility function development, (2) developing building-level time dependent recovery 

functions, (3) accounting for the effect of externalities and socio-economic vulnerability and (4) 

developing community/regional level recovery functions. These are discussed in detail in the 

following subsections. 

Recovery-Based Fragility Function Parameters 

A rigorous evaluation of seismic resilience requires probabilistic methods for assessing limit states 

that influence post-earthquake functionality, which can be incorporated in modelling the recovery 

of the building stock. The methodology incorporates a set of building performance limit states that 

specifically inform community seismic resilience (Figure 2-1). These limit states have been 

adapted from the building performance categories defined by SPUR. They include (i) damage 

triggering inspection, (ii) occupiable damage with loss of functionality, (iii) unoccupiable damage, 

(iv) irreparable damage and (v) collapse. These limit states are different from those that are 

currently used in OpenQuake and other risk modelling platforms. This sub-section is intended to 

document the methodology used to map the fragility function parameters from the loss-based limit 

states used in OpenQuake to those of the recovery-based limit states used to model recovery. 



“Back to Normal”: Earthquake Recovery Modelling 

 

15 

 

 

 

Figure 2-1. Event tree showing building performance limit states and recovery actions. 

 

Recovery-Based Building Performance Limit States 

Five discrete limit states (LS0 through LS5) are used, which are explicitly linked to post-earthquake 

recovery-related activities. Each limit state is associated with a unique combination of the 

following consequent actions to restore building function: 

 Assessment and planning activities i.e. post-earthquake inspection and/or evaluation, 

preparation of plans and designs, financing and bidding preparation for construction work; 

 Repairs needed to make building occupiable and repairs needed to restore functionality for 

repairable buildings; and 

 Demolition and building replacement for non-repairable buildings. 

LS0 - Damage below the threshold that would trigger inspection. 

LS1 - Damage Triggering Inspection with Functionality Maintained: This represents the minimum 

damage threshold that would require post-earthquake inspection and/or evaluation. It is also used 

to imply a level of damage where, despite the need for post-earthquake inspection, the structural 

safety and critical subsystems essential to the functionality of the building are not compromised. 

However, operations may be impacted if the owner/operator decides to close the facility until 

inspections are completed. This decision is prompted by visible damage to structural (cracking of 

concrete members) or non-structural elements (partitions, facades, etc.). This type of damage 

occurs at low drift levels and affects structural and non-structural components with low 

deformation capacities. 

no 

collapse

collapse LS5

inspection not triggered LS0
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repairable 
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LS2 - Occupiable Damage with Loss of Functionality: This implies that the building is structurally 

safe, occupiable and accessible but unable to carry out its primary function. This loss of 

functionality can occur despite the preservation of structural integrity as a result of damage to 

building systems, non-structural components or contents, which are critical to the operations of the 

facility. There may also be damage to structural components whose repair actions hinder normal 

building operations. 

LS3 - Unoccupiable Damage: This infers that the building is either inaccessible or not safe to 

occupy following an earthquake. The loss of structural safety will likely be due to a substantial loss 

in the load carrying capacity of the gravity or lateral system that poses a life safety threat in the 

event of an aftershock. It is also possible but less likely for non-structural damage to compromise 

the safety or prevent access to the building. This is usually in the form of some type of falling 

hazard (e.g. brick façade or infill panels); however, these types of dangers can be mitigated in a 

short period of time. LS3 is of particular importance to residential buildings as it is directly related 

to the shelter-in-place performance goal, emphasized in SPUR’s resilient city initiative. 

LS4 - Irreparable Damage: LS4 pertains to cases where the building is damaged to such an extent 

that repair becomes technically or cost prohibitive, necessitating demolition and replacement. The 

three main earthquake-related situations that can lead to demolition include (1) large permanent 

deformations and story drifts that make repairs unfeasible, (2) direct economic losses that exceed 

the limit set by insurance providers triggering full-value pay-out leading to complete replacement 

and (3) damage to key structural components that could significantly impede the repair process. 

LS5 - Collapse: LS5 is related to complete or partial collapse, which is generally associated with 

either excessive lateral deformations (sidesway collapse) or the local or global loss of vertical load 

carrying capacity.  

Loss-Based Building Performance Limit States 

Risk modelling platforms, such as OpenQuake and HAZUS, use limit state fragility functions that 

relate earthquake ground shaking intensity to building damage. These limit states are used to link 

ground motion intensity to direct economic losses (vulnerability curves) that result from having to 

repair or replace damaged buildings. The limit states are classified based on construction type and 

are described in terms of the type and extent of physical damage to the building. The following is 

a description of the limit states (taken from HAZUS), which are relevant to wood frame single- 

and multi-family residential buildings found in Napa and California in general: 
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Slight Damage: Small cracks in non-structural elements (window, wall intersections, masonry 

chimneys, masonry veneer and stucco) and slippage in bolted connections. 

Moderate Damage: Small cracks across shear wall, large cracks at doors, windows and masonry 

veneer, topping of tall masonry chimneys, minor slack in diagonal rod bracing and small cracks 

and split in bolted connections. 

Extensive Damage: Large cracks across shear wall plywood joints, large slack at diagonal and 

broken braces, permanent lateral movement at floors and roof, topping of most brick chimneys, 

small cracks in foundations, split and/or slippage of sill plates and partial collapse at garage with 

soft-story configurations.  

Complete Damage: Large permanent lateral displacement, may collapse, imminent collapse, some 

structures slip off foundations, large foundation cracks, 3% total area collapsed, broken brace rod 

or failed framing connections. 

Methodology for Mapping Fragility Function Parameters from Loss-Based to Recovery-

Based Building Performance Limit States 

There is an obvious correlation between the loss-based and recovery-based building performance 

limit states. In both cases, the limit states are discrete, sequential and mutually exclusive with the 

higher limit states being associated with more extensive damage. This obvious link was used as the 

basis for mapping the fragility function parameters between the two types of limit states. 

The fragility function for each of the loss-based limit states is assumed to take on a lognormal 

distribution and is defined by the following relationship: 
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where 
idsdS , is the median value of the spectral displacement at which the building reaches the 

threshold of damage state ids , 
ids is the standard deviation of the natural logarithm at which the 

building reaches the threshold of the damage state ids  and  is the standard normal cumulative 

distribution function. For a given building construction type, HAZUS provides the median spectral 

displacement and log standard deviation for each of the four loss-based limit states. The interstory 

drift at the threshold of each limit state is also provided. In addition to the building construction 
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type, the parameters also vary based on the seismic code design level which is directly related to 

the age of the buildings. Four code design levels are included, high-code, moderate code, low code 

and pre-code. The fragility function parameters for the two construction types for wood frame 

buildings (W1, wood light frame and W2 wood commercial and industrial) are shown in Table 2-1 

(taken directly from HAZUS). The parameters are also separated based on seismic code design 

level. 

Table 2-1. Fragility function parameters for loss-based damage states for wood frame buildings: (a) High-Code, (b) 

Moderate Code, (c) Low-Code and (d) Pre-Code seismic design levels. 

 
(a) 

 

 
(b) 

 

 
(c) 

 

 
(d) 

 

The primary objective of this part of the overall study was to map the loss-based fragility 

parameters shown in Table 2-1 to recovery-based limit state parameters. The first step was to 

estimate the conditional probability of being in a particular recovery-based limit state given the 

occurrence of a loss-based damage state. This conditional probability relationship is defined as 

follows: 

 )|( ji lbdsLBDSrbdsRBDSP        (2-2) 

where )|( jji lbdsLBDSrbdsRBDSP   is the probability that the recovery-based damage state 

)(RBDS i occurs given that the loss-based damage state )(LBDS  j  has been observed. Estimates 

of these conditional probabilities are provided in Table 2-2. The current values are based on 
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engineering judgement. They were obtained by examining the physical description of damage 

provided for the loss-based limit states and inferring the likelihood that this type of damage would 

trigger each of the six (LS0 through LS5) recovery-based limit states. Later on in the development 

of the framework, these estimates were refined based on the results from nonlinear response history 

analyses of typical wood frame buildings using the OpenSees modelling platform. The results from 

the structural response simulation were used to establish analytical fragility functions for both types 

of limit states. This process enabled the development of a more explicit relationship between the 

fragility parameters for the two types of limit states. The conditional probabilities estimates can be 

further refined using heuristic data obtained from expert opinion. However, this approach is outside 

the scope of the current project. 

In Table 2-2, each row provides the probability of being in each of the recovery-based limit states 

given the occurrence of the loss-based limit state in the first column of that row. For example, it 

can be observed that for a building that is in the loss-based limit state corresponding to moderate 

damage, the probability of being in recovery-based limit states LS0, LS1, LS2 and LS3, is 0.2, 0.4, 

0.3 and 0.1 respectively with a zero probability of being in the remaining limit states (LS4 and 

LS5). Given that the recovery-based limit states are mutually exclusive and collectively exhaustive, 

each row must sum to one. 

Table 2-2. Conditional probabilities used to map fragility parameters for loss-based to recovery-based limit states. 

LS0  Inspection 

not Triggered

LS1 

Inspection  

LS2  Loss of 

Functionality

LS3  Unsafe to 

Occupy

LS4  Damaged 

Beyond Repair

LS5 

Collapse

None 1.0 0.0 0.0 0.0 0.0 0.0

Slight 0.6 0.4 0.0 0.0 0.0 0.0

Moderate 0.2 0.4 0.3 0.1 0.0 0.0

Extensive 0.0 0.0 0.2 0.4 0.3 0.1

Complete 0.0 0.0 0.0 0.0 0.2 0.8

Loss-Based 

Damage States

P(RBDS = rbds i |LBDS = lbds j )

 

Given the loss-based fragility function parameters in Table 2-1 and the conditional probability 

estimates in Table 2-2, the probability of occurrence of a particular recovery-based limit state can 

be obtained using the total probability theorem: 

   dj

n

j

jidi SlrbdsLBDSPlrbdsLBDSrbdsPRBDSPSrbdsRBDSP
lbds

||)|(
1

 


 (2-3) 

where  ji lrbdsLBDSrbdsPRBDSP  | is taken from Table 2-2 and  dj SlrbdsLBDSP | is 

obtained from the fragility functions of the loss-based limit states. Given the probability of being 
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in recovery-based limit state i , the probability of exceeding that limit state is taken as the sum of 

the probabilities of occurrence of all limit states equal to and greater than i . 

  
rbdsn

i

didi SrbdsRBDSPSrbdsRBDSP |)|(      (2-4) 

We can then use Equation 2-4 to compute the median spectral displacement, 
irbdsdS , and dispersion 

irbds for the recovery-based limit state fragilities. Figure 2-2, Figure 2-3, Figure 2-4 and Figure 

2-5 provide a comparison of the recovery- and loss-based fragility functions. The parameters that 

define the recovery-based fragility functions for the wood light frame construction type, W1 (all 

code levels included) is summarized in Table 2-3. 

      

(a)                                                                         (b) 

Figure 2-2. Fragility curves for (a) loss-based and (b) recovery based limit states for light wood frame buildings (W1) 

with high-code seismic design. 

         

(a)                                                                         (b) 

Figure 2-3. Fragility curves for (a) loss-based and (b) recovery based limit states for light wood frame buildings (W1) 

with moderate-code seismic design. 
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(a)                                                                         (b) 

Figure 2-4. Fragility curves for (a) loss-based and (b) recovery based limit states for light wood frame buildings (W1) 

with low-code seismic design. 

 

         

(a)                                                                         (b) 

Figure 2-5. Fragility curves for (a) loss-based and (b) recovery based limit states for light wood frame buildings (W1) 

with pre-code seismic design. 
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Table 2-3. Fragility function parameters for recovery-based limit states for light wood frame buildings, W1: (a) 

Median spectral displacement at limit state exceedance and (b) log-standard deviation. 

LS1  Inspection  

Triggered

LS2  Loss of 

Functionality

LS3  Unsafe 

to Occupy

LS4  Damaged 

Beyond Repair

LS5 

Collapse

High-Code 1.2 3.1 5.4 8.5 15.6

Moderate-Code 1.1 2.5 4.1 6.4 11.9

Low-Code 1.0 2.5 4.0 6.1 11.9

Pre-Code 0.8 2.0 3.4 5.3 9.8

Code Level

Median Spectral Displacement for Exceeding Limit State

 

(a) 

LS1  Inspection  

Triggered

LS2  Loss of 

Functionality

LS3  Unsafe 

to Occupy

LS4  Damaged 

Beyond Repair
LS5  Collapse

High-Code 0.80 0.81 0.85 0.97 0.99

Moderate-Code 0.84 0.86 0.89 1.04 1.07

Low-Code 0.93 0.98 1.02 0.99 0.99

Pre-Code 1.01 1.05 1.07 1.06 1.08

Code Level

Log-Standard Deviation of Spectral Displacement at Limit State Exceedance

 

(b) 

Building-Level Recovery Model 

Overview 

In the previous section, it was noted that the recovery modelling methodology incorporates a set of 

building performance limit states that specifically inform community seismic resilience including 

(i) damage triggering inspection, (ii) occupiable damage with loss of functionality, (iii) 

unoccupiable damage, (iv) irreparable damage and (v) collapse. The link to post-earthquake 

recovery is established by defining a characteristic recovery path that is associated with each state 

and the level of functionality associated with each state. A building recovery function was 

computed accounting for the uncertainty in the occurrence of each recovery path and its associated 

limit state. The outcome is a probabilistic assessment of recovery of functionality at the building 

level for a given ground motion intensity. The overall methodology is based on the work by 

(Burton, Deierlein, Lallemant, & Lin, 2015). 

Building Recovery Paths 

Five distinct recovery paths were defined based on the limit states discussed previously. The 

recovery paths are described using discrete functioning states and the time spent in each state. The 

functioning states represent the changing condition of the building with respect to its ability to 

facilitate its intended operation. The functioning states for modelling the recovery of shelter-in-
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place housing capacity include (1) the building is unsafe to occupy (NOcc), (2) the building is safe 

to occupy but unable to facilitate normal operations (OccLoss) and (3) the building is fully 

functional (OccFull). Note that these three states are specific to the shelter-in-place metric and 

would need to be re-defined for other measures of functionality. The key to defining the 

functioning states are that (1) they must be explicitly linked to the building level limit states 

described earlier and (2) each functioning state must be associated with a quantifiable measure of 

functionality. 

The building level recovery path is conceptually shown in Figure 2-6. It is a step function that 

describes the time spent in each of the discrete functioning states. The recovery path (and recovery 

function discussed later) is assessed over a pre-defined period referred to as the control time, TLC; 

and TNOcc, TOccLoss and TOccFull that denotes the time spent in the NOcc, OccLoss and OccFull 

functioning states, respectively. It is important to note that the functioning states that comprise the 

recovery path for a given building depend on the limit state of that building immediately following 

the earthquake. For example, a building that is in limit state LS1 will only experience the NOcc and 

OccFull functioning states. On the other hand, a building that is in limit state LS2 or LS3 will 

experience all three functioning states. This is illustrated later in the discussion of building recovery 

paths. The time spent in each functioning state will also vary depending on the level of damage. 

For example, a building that is in limit state LS4, which must be demolished and rebuilt, will spend 

a significantly greater amount of time in the NOcc state than a building in limit state LS3, which 

only requires repairs. 

 

Figure 2-6. Conceptual illustration of recovery path for an individual building. 
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The recovery time for an individual building is defined as the period between the occurrence of the 

earthquake and the restoration of full functionality. The recovery time includes (1) the lead time 

which is the time required for building inspection and/or evaluation, finance planning, 

architectural/engineering consultations, a competitive bidding process and to mobilize for 

construction (Mitrani-Reiser, 2007), (2) the repair time needed to restore occupiability and (3) the 

repair time needed to restore functionality. The time needed to restore occupiability is taken as the 

time to complete repairs related to structural safety and internal access, whereas the time needed to 

restore functionality includes the additional time needed to repair/replace building systems, non-

structural components and contents that are essential to the building functionality. Both the lead 

and repair times for structural and non-structural components depend on the limit state of the 

building immediately following the event. For example, a building that is in limit state LS1 

following an event (damage triggers inspection but the building is found to be safe to occupy and 

functional) will likely be green tagged and only be out of service for the time it takes to complete 

the inspection. On the other hand, a building that is in limit state LS2 (building is safe to occupy 

but not functional) may receive a yellow tag, which would require detailed evaluations by a 

professional engineer prior to re-occupancy. A building that is red tagged (LS3, LS4 and LS5) may 

require demolition or extensive repairs, triggering additional lead time for planning, 

architectural/engineering consultations, possible competitive bidding and mobilization for 

construction. Mitrani-Reiser, (2007) developed a performance-based approach to estimating repair 

times for both structural and non-structural damage, which incorporates the lead times for different 

tagging scenarios as well as the sequencing of repairs. In this study, Mitrani-Reiser’s method is 

used to compute both the repair time needed to restore safety/accessibility and the repair time 

needed to restore functionality. 

The recovery paths for each limit state were derived from the information provided in Table 2-4, 

which shows the relevant activities and time spent in each functioning state. The recovery paths 

are described as follows: 

 Recovery Path for LS0: This implies that the functionality of the building is not disrupted 

and the OccFull state is maintained throughout the period following the earthquake. 

 Recovery Path for LS1: This path is associated with the occurrence of LS1 where the extent 

of damage triggers inspection but does not compromise the functionality of the building. It 

is comprised of the NOcc and OccFull states. The time spent in the NOcc state is the time 
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to complete inspections. Following inspections, the building is deemed occupiable and fully 

functional, immediately entering fully functional OccFull state. 

 Recovery Path for LS2: For LS2, the recovery path includes all three functioning states. Like 

recovery path 1, the building initially enters the NOcc state until inspections are complete. 

Following inspections, the building enters the OccLoss state because, despite being safe to 

occupy, repairs will be needed to restore functionality. The time spent in the OccLoss state 

is determined by the repair time for those building systems, non-structural components and 

content that is essential to the building function. Completion of these repairs returns the 

building to the fully functional OccFull state. 

 Recovery Path for LS3: The recovery path for LS3 also includes all three functioning states. 

Initially, the NOcc state includes the inspection and other lead times, along with the time to 

complete structural repairs needed to restore occupiability. Since LS3 is associated with 

significant structural and non-structural damage, the lead time will include planning, design 

consultations, bidding and the time to mobilize for construction. Following the completion 

of structural repairs, the recovery will enter the OccLoss state during which the repairs 

needed to restore functionality are completed. The completion of these repairs would return 

the building to the OccFull state. 

 Recovery Path for LS4: In LS4, where the building is irreparably damaged, the recovery path 

includes the NOcc and OccFull states, where the NOcc state includes the time to demolish 

and replace the damaged building. As the recovery of this building involves new 

construction, occupancy is not likely to be restored prior to full completion, which is why 

this path does not include the OccLoss phase. 

 Recovery Path for LS5: The recovery path associated with partial or complete collapse is 

very similar to that of the demolition case, the only difference being that LS5 would not 

require any time to assess whether or not the building could or would be repaired. However, 

this additional time is likely to be insignificant compared to the time needed to replace the 

building, hence the recovery paths associated with LS4 and LS5 are essentially the same. 
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Table 2-4. Recovery path activities and times for each functioning state. 

 

 

Probabilistic Assessment of Recovery of Functionality at the Building-Level 

Each functioning state can be linked to a quantifiable level of functionality. The functionality will 

typically be specified based on building owner/stakeholder and community resilience needs. For 

example, the functionality of a hospital might be measured by the number of available patient beds 

or patient waiting times for procedures offered by particular departments. The functionality 

associated with the OccFull state is equal to the pre-earthquake patient bed capacity and waiting 

time of the hospital. Obviously, the functionality associated with the NOcc state will be zero 

regardless of the measure of functionality since a building that is not occupiable will not be 

functional. The level of functionality assigned to the OccLoss state is less obvious and will vary 

based on the measure of functionality and the post-earthquake operating protocol for the facility. 

For example, in the case of a hospital facility that is in LS2, where the hospital is occupiable but 

has lost some of its essential services, the hospital administration may choose to halt operations 

and close the facility until those services are restored. On the other hand, the emergency needs of 

the community may compel the administration to provide some reduced level of medical treatment 

that is possible with limited building services. In such cases, the OccLoss state can be assigned a 

level of functionality that is some fraction of the pre-earthquake capacity. Another example is the 

case of residential buildings in a community, where, from the perspective of the policy-makers, 

functionality is measured by housing capacity or number of persons housed. Where loss of certain 

building functions would not preclude short-term shelter-in-place requirements, the shelter-in-

NOcc OccLoss OccFull

0 0 0 TLC

1 TINSP 0 TLC - TINSP

2 TINSP TFUNC TLC - TINSP - TFUNC

3 TINSP + TASMT + TMOB + TOCC TFUNC TLC - TINSP - TASMT - TMOB - TOCC - TFUNC

4 TASMT + TMOB + TREP 0 TLC - TASMT -  TMOB - TREP

5 TMOB + TREP 0 TLC - TMOB - TREP

TINSP - Time to complete inspections

TFUNC - Time to restore functionality

TASMT - Time to conduct engineering assessment

TMOB - Time to moblize for construction

TOCC - Time to complete repairs needed to restore occupiability/structural safety

TREP - Time to replace building

Recovery 

Path No.

Time/Acitivies in Functional State
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place functionality could be determined by assuming the full pre-earthquake housing capacity is 

achieved for both the OccFull and OccLoss states. Alternatively, the expected housing capacity at 

the OccLoss state may need to account for the likelihood that the building is evacuated by its 

residents given the loss of a particular service, i.e., 

 

      OccFulltqOccLossEvacPOccLosstqE |)(|1|)(     (2-5) 

 

where  OccLosstqE |)(  is the expected housing capacity for a residential building in the OccLoss 

functioning state;  OccLossEvacP |  is the probability that the building is evacuated, given that it 

is safe to occupy but without some of its services; and  OccFulltq |)( is the housing capacity 

associated with the OccFull state or the pre-earthquake housing capacity. The  OccLossEvacP |  

can be determined based on judgment informed by observations from past earthquakes. Knowing 

the level of functionality associated with each functioning state, the recovery paths for each limit 

state can be related to recovery functions, as illustrated in Figure 2-7 and calculated as follows: 

 

  
   
     
   















LCiOccLossNOcc

iOccLossNOcciNOcc

iNOcc

i

TtLSTTOccFulltq

LSTTtLSTOccLosstq

LSTtNOcctq

LStq

||)(

|||)(

||)(

|)(                   (2-6) 

 

where  iLStq |)(
 
is the time dependent building functionality given its immediate post-earthquake 

limit state LSi;    OccLosstqNOcctq |)(,|)( and  OccFulltq |)( represents the level of 

functionality associated with the NOcc, OccLoss and OccFull states respectively;  iNOcc LST | is 

the time from the earthquake to the end of the NOcc phase associated with limit state LSi; 

 iOccLossNOcc LSTT |  is the time from the earthquake to the end of the OccLoss phase for limit 

state LSi. 
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Figure 2-7. Conversion from recovery path to recovery function for residential building occupancy. 

The building recovery function is computed accounting for the likelihood of the building being in 

each of the five limit states for a given ground shaking intensity. This is illustrated in the event 

tree, shown in Figure 2-8 where each limit state is associated with a unique recovery function, 

computed from Equation 2-7. Figure 2-8 also incorporates a sixth event that corresponds to damage 

below the threshold level that triggers inspection. The uncertainty in the building limit state and 

expected recovery is determined by the following 

     IMLSPLStqIMtqE i

lsn

i ||)(|)(
1

                                           (2-7) 

where  IMtqE |)(  is the expected recovery function given IM and  IMLSP i |  is the probability 

that the building is in the ith limit state for a given IM level. 

 

 

Figure 2-8. Limit state event tree used to assess building-level recovery. 
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Statistical Models for Linking the Rate of Recovery to Socio-Economic Variables 

Overview 

 

Externalities and socio-economic vulnerability will have a significant effect on the rate of recovery 

of communities. This section presents several statistical models in addition to logistic regression 

that could inform the relationship between the pace of recovery and some combination of predictor 

variables that are related to socio-economic factors. Three linear regression methods were utilized 

using the Napa recovery and resilience variables including (i) Ordinary Least Squares, (ii) Ridge, 

and (iii) The Least Absolute Shrinkage and Selector Operator. Among those methods, statistical 

significance is attained when a p-value is less than the significance level which indicates that the 

statistic is reliable, i.e. that predictor has a strong influence on recovery. Two machine learning 

methods were also incorporated: (i) Random Forest, and (ii) Support Vector Machine. 

Ordinary Least Squares Regression (OLS) 

OLS is one of the most basic and commonly used prediction techniques with applications in fields 

as diverse as statistics, finance, economics and engineering. It uses a linear combination of 

predictors to estimate the dependent variable which can be taken using the formula: 

𝒀 = 𝑿𝜷 + 𝜺      (2-8) 

Y is an 𝑛×1 vector of the dependent variable where 𝑛 is the number of data points. X is an 𝑛×𝑝 

matrix of the explanatory variables where 𝑝 is the number of predictor variables. 𝛽 is a 𝑝×1 vector 

of the regression coefficients and 𝜀 is an 𝑛×1 vector describing the random component of the linear 

relationship between X and Y. 

The objective of OLS is to minimize the difference (residual) between the observed value of the 

dependent variable and predicted value by the linear approximation of the data, also called 

residuals. 

𝜷̂ =  𝒂𝒓𝒈𝒎𝒊𝒏 ∑ (𝒚𝒊 − 𝒙𝒊
𝑻𝜷)𝟐

𝒊 =(𝑿𝑻𝑿)−𝟏𝑿𝑻𝒀                                                           (2-9) 

To evaluate the statistical significance of the regression coefficient, the t-statistic is used, where 

implicit statistical hypotheses are 𝐻0: 𝛽 = 0 and 𝐻1: 𝛽 ≠ 0. The t-statistic, which follows the t 

distribution with (𝑛 − 𝑝) degrees of freedom, is computed as the ratio between the estimated 

regression coefficient and its standard error: 

𝑻 =
𝜷𝒋̂

𝒔𝒆(𝜷𝒋̂)
~𝒕(𝒏 − 𝒑)                                                                                            (2-10) 
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where 𝑠𝑒(𝛽𝑗̂) = √𝑠2(𝑋𝑇𝑋)𝑗𝑗
−1, 𝑠2 =

𝜀̂𝑇𝜀̂

𝑛−𝑝
, 𝜀̂ = Y − X𝛽̂,   

The p-value is the probability of obtaining at least as extreme results given that null hypothesis is 

true, i.e. 𝑝 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦(𝑡 > |𝑇|). If p-value is smaller than significance level 𝛼, the predictor 

attains statistical significance and therefore rejecting the null hypothesis. 𝛼 is mostly often set at 

0.05. 

Ridge Regression 

Ridge Regression is employed when analyzing multiple regression data that suffers from 

multicollinearity (Groetsch, 1984). Multicollinearity, which is the existence of strong correlations 

between predictor variables, can lead to inaccurate estimates of the regression coefficients, inflate 

the standard errors of the regression coefficients and deflate the partial t-tests for the regression 

coefficients. 

Ridge regression penalizes the size of the regression coefficients by imposing a constraint on the 

sum of the squared values (the L2 norm) of the predictor coefficients: 

𝜷̂ =  𝒂𝒓𝒈𝒎𝒊𝒏[∑ (𝒚𝒊 − 𝒙𝒊
𝑻𝜷)𝟐

𝒊 + 𝝀 ∑ 𝜷𝒋
𝟐𝒑

𝒋=𝟏 ]=(𝑿𝑻𝑿 + 𝝀𝑰)−𝟏𝑿𝑻𝒀                                       (2-11) 

To select λ, cross validation is conducted whereby, the data is split into K folds. The regression 

model is developed using K − 1 folds and the test error is evaluated using the fold that was excluded 

from the model fitting. The best choice of λ would be the one that provides the least test error. 

T-statistic in ridge is computed in a similar manner to OLS (Equation 2-10): 

𝑤ℎ𝑒𝑟𝑒 𝑠𝑒(𝛽𝑗̂) = √𝑠2[(𝑋𝑇𝑋 + 𝜆𝐼)−1𝑋𝑇𝑋(𝑋𝑇𝑋 + 𝜆𝐼)−1]𝑗𝑗, 𝑠2 =
𝜀̂𝑇𝜀̂

𝑛 − 𝑝
, 𝜀̂ = Y − X𝛽̂ 

 

The Least Absolute Shrinkage and Selector Operator Regression (LASSO) 

The LASSO regression is another method that addresses multicollinearity by doing both model 

selection and coefficient shrinkage (Tibshirani, 1996). Using L1-penalization, 

 

𝜷̂ =  𝒂𝒓𝒈𝒎𝒊𝒏[∑ (𝒚𝒊 − 𝒙𝒊
𝑻𝜷)𝟐

𝒊 + 𝝀 ∑ |𝜷𝒋|
𝒑
𝒋=𝟏 ]=(𝑿𝑻𝑿 + 𝝀𝑰)−𝟏𝑿𝑻𝒀                             (2-12) 

LASSO is preferred over ridge regression when there is an assumption that the solution is sparse, 

i.e. many 𝛽𝑖= 0, because L1 regularization shrinks some of the predictor coefficients to zero. If there 
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is no assumption of the sparse feature, ridge regression is usually preferred since ridge only shrinks 

the regression coefficients. 

Random Forest 

The random forest is a machine learning algorithm which combines the strategies of bagging and 

randomly selecting features to classify and regress data (Breiman, 2001). Specifically, random 

forest constructs a multitude of decision trees using training data and outputs the mode of the 

classes (classification) or mean prediction (regression) of the individual trees. Bagging involves 

applying a majority vote (selecting the path with the greatest number of outcomes) for classification 

or prediction after many large trees are independently constructed using bootstrap resampled 

versions of the training data. Random forests change how the classification and regression trees are 

constructed. In normal trees, each node is split using the best split among all variables. In a random 

forest, each node is split using the best among a subset of predictors randomly chosen at that node. 

The algorithm of random forest is as follows: 

1. Draw bootstrap samples from training dataset. 

2. For each of sample tree, the Classification and Regression Tree (CART) is applied first. 

The idea of CART is to recursively divide the space into rectangular subspaces until 

satisfying some criteria of classification or regression. 

3. In each tree, randomly selected features need to be incorporated to modify CART. The best 

split (based on the Gini index (Menze, et al., 2009) among a subset of predictors is chosen 

randomly rather than using all variables.  

4. Classify or regress data by major vote on all individual tress. 

Support Vector Machine (SVM) 

SVM is another widely used supervised learning method that is used to analyze data and perform 

classification and regression. In SVM regression, the input n-dimension features x are first mapped 

onto a high m-dimensional space using some fixed mapping (Smola & Vapnik, 1997). In this study, 

the Gaussian Radial Basis mapping is used, then linear regression is used to construct the model in 

this space. The linear model in the m-dimension feature space could be defined as: 

𝒇(𝒙, 𝝎) = ∑ 𝝎𝒋. 𝒈𝒋(𝒙)𝒎
𝒊=𝒋 + 𝒃                                                                    (2-13) 

where, 𝑔𝑖(𝑥), 𝑖 = 1, … , 𝑚 denotes the transformation using Gaussian Radial Basis. 
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SVM regression uses the 𝜀-insensitive loss function proposed by (Smola & Vapnik, 1997): 

𝑳(𝒚, 𝒇(𝒙, 𝒘)) = 𝐦𝐚𝐱 (𝟎, |𝒚 − 𝒇(𝒙, 𝒘)| − 𝜺)                                                  (2-14) 

where 𝜀 is the tolerable bandwidth. At the same time, it also tries to reduce model complexity by 

minimizing ‖𝑤‖2. Combining these two techniques, the following primal optimization problem is 

formed:  

𝒎𝒊𝒏 {
𝟏

𝟐
‖𝒘‖𝟐 + 𝑪 ∑ (𝝃𝒊 + 𝝃𝒊

∗)𝒏
𝒊=𝟏 }                                                                                   (2-15) 

s.t. {

𝑦𝑗 − 𝑓(𝑥𝑗 , 𝑤) − 𝜀 ≤ 𝜉𝑖

𝑓(𝑥𝑗 , 𝑤) − 𝑦𝑗 − 𝜀 ≤ 𝜉𝑖
∗

𝜉𝑖, 𝜉𝑖
∗ ≥ 0, 𝑖 = 1, … 𝑛

 

The solution to the above dual problem is given by: 

   𝒇(𝒙) = ∑ (𝜶𝒊 − 𝜶𝒊
∗)𝑲(𝒙𝒊, 𝒙)𝒌

𝒊=𝟏                                                                                       (2-16) 

s.t. {
0 ≤ 𝛼𝑖 ≤ 𝐶

0 ≤ 𝛼𝑖
∗ ≤ 𝐶

 

where, 𝐾(𝑥𝑖, 𝑥) = ∑ 𝑔𝑗(𝑥𝑖)𝑔𝑗(𝑥)𝑚
𝑗=1 , and k is the number of support vectors. 

 

Community-Scale Recovery Functions 

Figure 2-9 shows an overview of the framework used to generate the community-level recovery 

functions. The performance-based earthquake engineering framework is applied to each building 

within the target community, incorporating the limit states described earlier; the outcome of which 

is a recovery function that is generated for individual buildings. The function describing 

community-level recovery is obtained by aggregating the recovery curves for the individual 

buildings after accounting for the variation and spatial correlation of shaking intensity at each site, 

the effect of externalities and other socio-economic factors. Note that the contribution of individual 

buildings to the functionality of the region depends on the type of building and measure of 

functionality. This aggregation of building-level functionality would require quantifying the 

contribution of each building to the defined measure of community function. The housing recovery 

function is described by the following equation: 

   



bldgn

i

jiij EQIMtqEEQtQ
1

,|)(|)(                               (2-17) 
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where Q(t) |EQj
éë ùû  describes community recovery for scenario earthquake j,  jii EQIMtqE ,|)(  

describes the expected recovery curve for building i at a given ground motion IM level resulting 

from scenario earthquake j, and bldgn  is the number of buildings in the community. 

The long-term effects of an earthquake on a community can also be described by the cumulative 

loss of functionality over the course of the recovery period. For example, the loss of housing 

capacity over the recovery period measured in “person-days” can be computed from a community-

level recovery curve that has number of residents housed by the community as the measure of 

functionality. This cumulative loss in functionality for a particular earthquake event is illustrated 

in Figure 2-9 and can be described by the following equation: 

   
RE

E

T

T

jRE dttQQEQLQ ))((| 0                                         (2-18) 

where  jRE EQLQ |  is the loss of functionality over the recovery period for scenario earthquake j, 

0Q  is the pre-earthquake level of functionality, ET  is the time of the earthquake and RET  is the 

time at full recovery. 

Equation 2-18 describes the cumulative loss of functionality for a single scenario earthquake. 

Multiple scenario earthquakes can be considered and used to describe the annual exceedance rate 

for specified amounts of cumulative loss. This is obtained by computing the cumulative loss for 

multiple earthquake scenarios each with a different magnitude, location and annual rate of 

occurrence. The rate of exceedance,  , for specified loss levels is estimated by summing the 

occurrence rate for all scenarios in which the loss threshold on interest is exceeded.  

 


 
J

j

REjlqLQ lqLQIw
RE

1

                                                          (2-19) 

where jw is the occurrence rate for scenario j , and lq is the cumulative loss threshold. The 

indicator function  lqLQI RE   is set equal to 1 if the argument lqLQRE  is true and 0 otherwise. 
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Figure 2-9. Conceptual illustration of recovery modelling framework. 
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3. Software Tool for Recovery Modelling 

At the core of the recovery modelling project is an open-source computational tool that utilizes the 

OpenQuake-Engine (Silva, Crowley, Pagani, Monelli, & Pinho, 2014) and the recovery framework 

described herein to generate community scale recovery projections. Here, the methods, metrics, 

and recovery framework were incorporated into the existing OpenQuake Integrated Risk Modelling 

Toolkit, resulting in a dynamic and user-friendly software for generating both building-by-building 

and community level post-earthquake recovery predictions. The OpenQuake Integrated Risk 

Modelling Toolkit, developed by GEM, allows users to: 1) incorporate their local knowledge and 

data; 2) develop composite indicators (or indices) to measure social vulnerability and/or disaster 

resilience; 3) integrate these indices with physical risk estimates from OpenQuake or other software 

platforms; and 5) visualize the results. Following the latest enhancement of the software, it is now 

possible to utilize the OpenQuake-Engine to generate damage estimations, to generate building 

level and/or community level recovery functions based on the incorporated recovery framework, 

and to visualize and save the results within the QGIS environment. The software tool is transparent, 

and users can adjust the source code to their needs. The OpenQuake Integrated Risk Modelling 

Toolkit is available on the QGIS Plugin Repository. 

In the following steps, a brief description of the basic workflow to develop an end-to-end recovery 

prediction is presented, where the main features and capabilities of the tool are highlighted. For the 

sake of demonstration, the recovery of a random sample of the residential buildings of the city of 

Napa is utilized as a use case. 

STEP 1: Preparation of the input files to launch an OpenQuake-Engine analysis 

The recovery modelling algorithm requires users to provide a CSV file containing the probability 

of exceedance of each limit state for each individual building in the exposure model. The latter can 

be computed by running a Scenario Damage Assessment, which is a type of analysis supported by 

the risk component of the OpenQuake-Engine. The input files necessary for running a scenario 

damage calculation and the resulting output files are depicted in Figure 3-1. For technical details, 

definitions and examples of each component, readers are referred to (Silva, Crowley, Pagani, 

Monelli, & Pinho, 2014). 

https://www.globalquakemodel.org/what/physical-integrated-risk/socio-economic-vulnerability/
https://www.globalquakemodel.org/what/physical-integrated-risk/socio-economic-vulnerability/
https://plugins.qgis.org/plugins/svir/
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Figure 3-1. Scenario Damage Calculator input/output structure. 

Figure 3-2 shows the window that requests users to upload the input files and run the scenario 

damage calculation. 

 

Figure 3-2. Pop-up window to run the OpenQuake Engine server. 

It should be noted that the OpenQuake-Engine needs to be installed in the user’s machine to run a 

calculation within the QGIS environment. 

STEP 2: Preparation of the input files to run the recovery modelling algorithm 

Table 3-1 presents the input files necessary to perform the recovery modelling analysis. The files 

should be adjusted to the available data and needs of the user. 
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Table 3-1. Required input files for the recovery modelling algorithm. 

Input File Short Explanation 

Damage by asset (csv) 

File that contains the mean probabilities of 

exceedance of each damage state for each 

individual building; output of the Scenario Damage 

Calculator of the OpenQuake-Engine 

Assessment Times (txt) Time to conduct engineering assessment 

Inspection Times (txt) Time to complete inspections 

Mobilization Times (txt) Time to mobilize for construction 

Recovery Times (txt) 
Period between the occurrence of the earthquake 

and the restoration of full functionality 

Repair Times (txt) Time to replace building 

Repair Times Dispersion (txt) 
Defines the level of uncertainty associated with the 

repair times 

Lead Time Dispersion (txt) 
Defines the level of uncertainty associated with the 

lead time 

Transfer Probabilities (csv) 
Discrete probability distribution of building level 

damage states (from OpenQuake) 

Number of Damage Simulations (txt) 
Number of damage realizations used in Monte 

Carlo Simulation 

 

STEP 3: Conversion of the “Damage by asset” CSV file to a shapefile 

As Figure 3-2 demonstrates, the list of the outputs from the Scenario Damage calculation can be 

visualized. The tool offers the possibility to load the “Damage by asset” CSV file as a QGIS vector 

layer, stored in the user’s computer as a shapefile. In addition, it is possible to automatically style 

the layer with respect to a chosen damage state. Alternatively, the user can upload on QGIS the 

“Damage by asset” CSV file, structured in the same format as produced by the OpenQuake Engine, 

and save it as a shapefile. 

At this point, the user may choose between two workflows on how to proceed to the generation of 

single buildings and/or community level recovery curves. 

Workflow 1 

The user can select individual buildings (or a group of buildings) and the respective recovery curve 

(single or aggregated) is automatically developed. The curve can be edited, digitized and exported 

as a CSV, as well as saved as an image. As shown Figure 3-3b, the user is required to select one of 

two available algorithmic approaches regarding the estimation of the recovery time (see Table 3-2) 

and, more importantly, to request the development of recovery curves by setting the Output Type 
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tab to “Recovery Curves”. Figure 3-3 illustrates an example of the aggregated recovery curve of a 

set of selected buildings (highlighted with yellow). 

Table 3-2. Short explanation of the aggregated and disaggregated approach for the estimation of the recovery time. 

Approach for estimation of recovery time Short Explanation 

Aggregated approach Building-level recovery model as a single process 

Disaggregated approach 

Building-level recovery modelled using four 

processes: inspection, assessment, mobilization 

and repair  

 

 
 

a) b) 

Figure 3-3. Aggregated recovery curve of a set of selected buildings (designated with yellow). 

It should be emphasized that the integration of the recovery modelling algorithm in the QGIS 

software enables the users to adapt the workflow to their needs, leveraging all the features provided 

by the QGIS framework. The QGIS Processing Toolbox gives access to a wide variety of 

geoalgorithms, seamlessly integrating several different open-source resources, such as R, SAGA 

or GDAL. For instance, a SAGA algorithm, the “Add Polygon Attributes to Points”, can be used 

to aggregate by zone a set of selected assets, resulting in relating each asset to the identifier of the 

https://www.r-project.org/
https://docs.qgis.org/2.8/en/docs/user_manual/processing_algs/saga/index.html
https://docs.qgis.org/2.2/en/docs/user_manual/plugins/plugins_gdaltools.html
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geographical area (zone) where it belongs. Following, the selection of the set of assets to be 

considered in the analysis can be performed in several different ways. The user can directly select 

points by clicking them on the map, or select points by using a formula. If points have been labeled 

with the identifier of the zone, the selection can be done with respect to the zone identification (or 

ID). 

Workflow 2 

Initially, as shown in Figure 3-4, the user must select the layer containing the information regarding 

damage state probabilities per asset (see STEP 1), after which a specific recovery time approach 

(Aggregate/Disaggregate) shall be opted. Here, it is possible to upload the layer of the study area 

with zonal geometries and generate aggregated recovery curves by zones. To exemplify, Figure 

3-5 illustrates the block groups (zones) of the city of Napa, California and the aggregated recovery 

curve for the block group with the ID of 8032. 

 

Figure 3-4. Pop-up window to run the recovery modelling algorithm. 
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Figure 3-5. Community level recovery curve for the zone (block group) with an ID of 8032. 

By unchecking the “Aggregate assets by zone” box (Figure 3-4) the algorithm generates a single 

community recovery curve by aggregating the recovery curves of all the buildings within the 

region. The graphs, similar to the one shown in Figure 3-5, are saved in the output directory 

designated by the user. In addition, building-by-building recovery curves are digitized and saved 

as text files (.txt) in the same output directory. The data can be further used (e.g. with Microsoft 

Excel) to generate and visualize individual building recovery curves that may be of interest to the 

user. 

  



“Back to Normal”: Earthquake Recovery Modelling 

 

41 

 

4. CONCLUSIONS 

The road “back to normality” following a damaging earthquake is often rough and long. It is, 

therefore, of great value to monitor and study the recovery trajectory of a community, compile 

lessons learned, identify the factors that may impede the process and work towards their mitigation. 

Not surprisingly, the time of a community to recover is not only affected by the extent of the 

physical damage, but depends on many external factors strongly associated with the socio-

economic conditions of the affected community. For example, the absence of earthquake insurance 

may burden homeowners with the rebuilding costs, which, especially in low-income families, may 

considerably hinder the recovery. Resilient communities are in a better position to absorb and 

withstand the impacts of a damaging earthquake and recover faster. A resilient community 

acknowledges its vulnerabilities, promotes measures to mitigate them and has pre-disaster plans in 

place to better and more efficiently respond and subsequently recover following a devastating 

earthquake. The work presented herein aims at facilitating stakeholders and decision makers to 

take more informed and efficient actions that primarily consider the needs of the most vulnerable 

groups of their communities. 

Being state-of-the-art methodologies, it is acknowledged that further study and validation of the 

effectiveness of the proposed approaches is crucial. The methodology in section 1, for example, 

was developed using the city of Napa and the 2014 South Napa Earthquake, as a real-world case 

study. Therefore, it is expected that it will be applicable to communities with similar social 

characteristics and structure. However, future work shall focus on investigating the applicability 

and reliability of the methodology to different regions and different perils. 

 Scale of analysis: The Napa case study was conducted at the U.S. Census Block Group level 

of analysis. However, it is important to consider to what extent changes in scale might lead to 

contradicting results. At minimum, research should be conducted to better understand the 

association between damage, resilience, and recovery potential at different scales. 

 Indicator selection: The variable selection process for the development of composite 

indicators of resilience was subjective and based on secondary source data. The latter provides 

fertile ground for continued work that focuses on alternate assessment standards such as 

approaches that make use of resilience scorecards that are highly customizable and make use 

of primary source data. 
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